मराठी

The Sum of Two Numbers is 6 Times Their Geometric Means, Show that the Numbers Are in the Ratio ( 3 + 2 √ 2 ) : ( 3 − 2 √ 2 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .

उत्तर

Let the two numbers be a and b  . 

Let the geometric mean between them be G . 

We have: 

a + b = 6G

\[\text { But }, G = \sqrt{ab}\]

\[ \therefore a + b = 6\sqrt{ab}\]

\[ \Rightarrow \left( a + b \right)^2 = \left( 6\sqrt{ab} \right)^2 \]

\[ \Rightarrow a^2 + 2ab + b^2 = 36ab\]

\[ \Rightarrow a^2 - 34ab + b^2 = 0\]

\[\text { Using the quadratic formula: } \]

\[ \Rightarrow a = \frac{- \left( - 34b \right) \pm \sqrt{\left( - 34b \right)^2 - 4 \times 1 \times b^2}}{2 \times 1}\]

\[ \Rightarrow a = \frac{34b \pm b\sqrt{1156 - 4}}{2}\]

\[ \Rightarrow a = \frac{b\left( 34 \pm \sqrt{1152} \right)}{2}\]

\[ \Rightarrow \frac{a}{b} = \frac{34 \pm 24\sqrt{2}}{2}\]

\[ \Rightarrow \frac{a}{b} = 17 + 12\sqrt{2} \left[ \because \text { a and b are positive numbers } \right]\]

\[ \Rightarrow \frac{a}{b} = 3 + 8 + 2 \times 3 \times 2\sqrt{2}\]

\[ \Rightarrow \frac{a}{b} = \left( 3 + 2\sqrt{2} \right)^2 \]

\[ \Rightarrow \frac{a}{b} = \frac{\left( 3 + 2\sqrt{2} \right)^2 \left( 3 - 2\sqrt{2} \right)}{\left( 3 - 2\sqrt{2} \right)}\]

\[ \Rightarrow \frac{a}{b} = \frac{\left( 3 + 2\sqrt{2} \right)\left( 9 - 8 \right)}{\left( 3 - 2\sqrt{2} \right)}\]

\[ \Rightarrow \frac{a}{b} = \frac{\left( 3 + 2\sqrt{2} \right)}{\left( 3 - 2\sqrt{2} \right)}\]

\[ \Rightarrow a: b = \left( 3 + 2\sqrt{2} \right): \left( 3 - 2\sqrt{2} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.6 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.6 | Q 8 | पृष्ठ ५५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Evaluate `sum_(k=1)^11 (2+3^k )`


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Express the recurring decimal 0.125125125 ... as a rational number.


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


For the G.P. if r = `1/3`, a = 9 find t7


Which term of the G.P. 5, 25, 125, 625, … is 510?


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Find : `sum_("r" = 1)^oo 4(0.5)^"r"`


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×