Advertisements
Advertisements
प्रश्न
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
उत्तर
Given, `S_∞ = 2/5 + 3/5^2 +2/5^3 + 3/5^4 + ...`
`S_∞ = (2/5 + 2/5^3 + ...∞) + (3/5^2 + 3/5^4 + ...∞)`
S∞ = S'∞ + S''∞
r' = `(2/5^3)/(2/5) = 1/5^2`
r'' = `(3/5^4)/(3/5^2) = 1/5^2`
`S_∞ = a/(1 - r) ...|r| < 1`
S∞ = `(2/5)/(1 - 1/5^2) + (3/5^2)/(1 - 1/5^2)`
S∞ = `(2/5)/(1 - 1/25) + (3/25)/(1 - 1/25)`
S∞ = `(2/5)/((25 - 1)/25) + (3/25)/((25 - 1)/25)`
S∞ = `(2/5)/(24/25) + (3/25)/(24/25)`
S∞ = `(2 × 25)/(5 × 24) + (3 × 25)/(25 × 24)`
S∞ = `(10)/(24) + (3)/(24)`
S∞ = `13/24`
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find the 4th term from the end of the G.P.
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
Find the geometric means of the following pairs of number:
2 and 8
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.