मराठी

If a + B X a − B X = B + C X B − C X = C + D X C − D X (X ≠ 0), Then Show that A, B, C and D Are in G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.

उत्तर

\[\text { Given }: \]

\[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\]

\[\text { Now, } \frac{a + bx}{a - bx} = \frac{b + cx}{b - cx}\]

\[\text { Applying componendo and dividendo }\]

\[ \Rightarrow \frac{\left( a + bx \right) + \left( a - bx \right)}{\left( a + bx \right) - \left( a - bx \right)} = \frac{\left( b + cx \right) + \left( b - cx \right)}{\left( b + cx \right) - \left( b - cx \right)}\]

\[ \Rightarrow \frac{2a}{2bx} = \frac{2b}{2cx}\]

\[ \Rightarrow \frac{a}{b} = \frac{b}{c}\]

\[\text { Similiarly, } \frac{\left( b + cx \right) + \left( b - cx \right)}{\left( b + cx \right) - \left( b - cx \right)} = \frac{\left( c + dx \right) + \left( c - dx \right)}{\left( c + dx \right) - \left( c - dx \right)}\]

\[ \Rightarrow \frac{b}{c} = \frac{c}{d}\]

\[\text { Therefore, a, b, c and d are in G . P } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.1 | Q 16 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The third term of G.P. is 4. The product of its first 5 terms is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×