Advertisements
Advertisements
प्रश्न
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
उत्तर
Let a be the first term and r be the common ratio of the G.P. According to the given conditions,
S2 = `-4 = ("a"(1 - "r"^2))/(1 - "r")` ........(i)
a5 = 4 × a3
⇒ ar4 = 4ar2 ⇒ r2 = 4
∴ r = ± 2
From (i) we obtain
-4 = `("a"[1 - (2)^2])/(1 - 2)` for r = 2
⇒ `-4 = ("a"(1 - 4))/-1`
⇒ −4 = a(3)
⇒ a = `(-4)/3`
Also, −4 = `("a"[1 - (-2)^2])/(1 - (-2))` for r = −2
⇒ `-4 = ("a"(1 - 4))/(1 + 2)`
⇒ `-4 = ("a"(-3))/3`
⇒ a = 4
Thus, the required G. P. is `(-4)/3, (-8)/3, (-16)/3` ,.... or 4, −8, 16, −32 ........
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find the 4th term from the end of the G.P.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
Find the geometric means of the following pairs of number:
a3b and ab3
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
Write the product of n geometric means between two numbers a and b.
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if a = `2/3`, t6 = 162, find r.
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
The third term of a G.P. is 4, the product of the first five terms is ______.