Advertisements
Advertisements
प्रश्न
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
उत्तर
tn = `(5^("n"-3))/(2^("n"-3)) = (5/2)^("n"-3)`
∴ tn+1 = `(5/2)^("n"+1-3) = (5/2)^("n"-2)`
∴ `("t"_("n"+1))/"t"_"n" = ((5/2)^("n"-2))/((5/2)^("n"-3))`
= `(5/2)^("n" - 2 - "n" + 3)`
= `5/2`, which is a constant
∴ the sequence is a G.P. whose common ratio is `5/2`.
Now, tn = `(5/2)^("n" - 3)`
∴ the first term = t1 = `(5/2)^(1 - 3)`
= `(5/2)^(-2)`
= `(2/5)^2`
= `4/25`
Hence, the first term = t1 = `4/25`
and the common ratio = r = `5/2`.
APPEARS IN
संबंधित प्रश्न
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Express the recurring decimal 0.125125125 ... as a rational number.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
The third term of G.P. is 4. The product of its first 5 terms is ______.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.