मराठी

Find the Sum of the Following Series: 0.6 + 0.66 + 0.666 + .... to N Terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms

उत्तर

We have,
 0.6 + 0.66 +.666 + ... to n terms

\[S_n\] = 6 [0.1 + 0.11+ 0.111 + ... n terms]

\[= \frac{6}{9}\left( 0 . 9 + 0 . 99 + 0 . 999 + . . . \text { n terms } \right)\]

\[ = \frac{6}{9}\left\{ \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + . . .\text {  n terms } \right\}\]

\[ = \frac{6}{9}\left\{ \left( 1 - \frac{1}{10} \right) + \left( 1 - \frac{1}{100} \right) + \left( 1 - \frac{1}{1000} \right) + . . . \text { n terms } \right\} \]

\[ = \frac{6}{9}\left\{ n - \left( \frac{1}{10} + \frac{1}{{10}^2} + \frac{1}{{10}^3} + . . . \text { n terms } \right) \right\} \]

\[ = \frac{6}{9}\left\{ n - \frac{1}{10}\frac{\left( 1 - \left( \frac{1}{10} \right)^n \right)}{\left( 1 - \frac{1}{10} \right)} \right\}\]

\[ = \frac{6}{9}\left\{ n - \frac{1}{9}\left( 1 - \frac{1}{{10}^n} \right) \right\}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.3 | Q 4.5 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the rational number whose decimal expansion is \[0 . 423\].


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. If t3 = 20 , t6 = 160 , find S7


Find : `sum_("n" = 1)^oo 0.4^"n"`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The third term of G.P. is 4. The product of its first 5 terms is ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×