Advertisements
Advertisements
प्रश्न
Given a G.P. with a = 729 and 7th term 64, determine S7.
उत्तर
गुणोत्तर श्रेणी का पहला पद, a = 729
मान लीजिए सार्व अनुपात = r
∴ 7वाँ पद = ar7-1 = ar6
729 r6 = 64
⇒ r6 = `64/729 = (2/3)^6`
∴ r = `2/3`
अब S7 = `("a"(1 - "r"^"n"))/(1 - "r")`
= `(729[1 - (2/3)^7])/(1 - 2/3)`
= `729 xx 3 xx [(2187 - 128)/2187]`
= `(729 xx 3)/2187 (2059)`
= 2059
APPEARS IN
संबंधित प्रश्न
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
Find the geometric means of the following pairs of number:
a3b and ab3
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
Which term of the G.P. 5, 25, 125, 625, … is 510?
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For a G.P. if S5 = 1023 , r = 4, Find a
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Find : `sum_("n" = 1)^oo 0.4^"n"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
The third term of G.P. is 4. The product of its first 5 terms is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum or difference of two G.P.s, is again a G.P.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.