Advertisements
Advertisements
प्रश्न
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
उत्तर
\[S_n = \sum^n_{k = 1} \left( 2^k + 3^{k - 1} \right)\]
\[ = \sum^n_{k = 1} 2^k + \sum^n_{k = 1} 3^{k - 1} \]
\[ = \left( 2 + 4 + 8 + . . . + 2^n \right) + \left( 1 + 3 + 9 + . . . + 3^n \right) \]
\[ = 2\left( \frac{2^n - 1}{2 - 1} \right) + 1\left( \frac{3^n - 1}{3 - 1} \right) \]
\[ = \frac{1}{2}\left( 2^{n + 2} - 4 + 3^n - 1 \right) \]
\[ = \frac{1}{2}\left( 2^{n + 2} + 3^n - 5 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.