Advertisements
Advertisements
प्रश्न
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
उत्तर
Let the required numbers be a and b and A, G, H be their A.M., G.M., H.M. respectively.
Then A = `("a" + "b")/2`, G = `sqrt("ab")` and H = `(2"ab")/("a" + "b")`
Now, A – G = 2 ...(1)
and A – H = `18/5` ...(2)
Subtracting (2) from (1), we get,
– G + H = `-8/5`
∴ H = `"G" - 8/5`
From (1), A = G + 2
∵ G2 = A.H.
∴ G2 = `("G" + 2)("G" - 8/5)`
= `"G"^2 + 2/5"G" - 16/5`
∴ 0 = `2/5"G" - 16/5`
∴ G = 8
∴ A = G + 2 gives A = 10
∴ `sqrt("ab")` = 8 and `("a" + "b")/2` = 10
∴ ab = 64, i.e., b = `64/"a"`
and a + b = 20
∴ `"a" + 64/"a"` = 20
∴ a2 + 64 = 20a
∴ a2 – 20a + 64 = 0
∴ (a – 16)(a – 4) = 0
∴ a – 16 = 0 or a – 4 = 0
∴ a = 16 or a = 4
When a = 16, a + b = 20 gives b = 4
When a = 4, a + b = 20 gives b = 16
Hence, the required numbers are 4 and 16.
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find the 4th term from the end of the G.P.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find three numbers in G.P. whose sum is 38 and their product is 1728.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
For the G.P. if r = − 3 and t6 = 1701, find a.
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.