मराठी

The Sum of First Two Terms of an Infinite G.P. is 5 and Each Term is Three Times the Sum of the Succeeding Terms. Find the G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.

उत्तर

Let the first term be a and the common difference be r.

\[\therefore a_1 + a_2 = 5 \]

\[ \Rightarrow a + ar = 5 . . . \left( i \right)\]

\[\text { Also, } a_n = 3\left[ a_{n + 1} + a_{n + 2} + a_{n + 3} + . . . \infty \right] \forall n \in N\]

\[ \Rightarrow a r^{n - 1} = 3 \left[ a r^{n + 1} + a r^{n + 2} + a r^{n + 3} + . . . \infty \right]\]

\[ \Rightarrow a r^{n - 1} = \frac{3a r^n}{1 - r} \]

\[ \Rightarrow 1 - r = 3r\]

\[ \Rightarrow 4r = 1 \]

\[ \Rightarrow r = \frac{1}{4}\]

\[\text { Putting } r = \frac{1}{4} \text { in } \left( i \right): \]

\[a + \frac{a}{4} = 5\]

\[ \Rightarrow 5a = 20 \]

\[ \Rightarrow a = 4\]

\[\text { Thus, the G . P . is } 4, 1, \frac{1}{4}, \frac{1}{16}, . . . \infty . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.4 | Q 11 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Which term of the G.P. 5, 25, 125, 625, … is 510?


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


For a G.P. If t3 = 20 , t6 = 160 , find S7


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Find : `sum_("n" = 1)^oo 0.4^"n"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×