मराठी

If S1, S2, S3 Be Respectively the Sums of N, 2n, 3n Terms of a G.P., Then Prove that S 2 1 + S 2 2 = S1 (S2 + S3). - Mathematics

Advertisements
Advertisements

प्रश्न

If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).

उत्तर

Let a be the first term and r be the common ratio of the given G.P.

\[\text {Sum of n terms, } S_1 = a\left( \frac{r^n - 1}{r - 1} \right) . . . \left( 1 \right)\]

\[\text { Sum of 2n terms }, S_2 = a\left( \frac{r^{2n} - 1}{r - 1} \right)\]

\[ \Rightarrow S_2 = a\left[ \frac{\left( r^n \right)^2 - 1^2}{r - 1} \right]\]

\[ \Rightarrow S_2 = a\left[ \frac{\left( r^n - 1 \right)\left( r^n + 1 \right)}{r - 1} \right]\]

\[ \Rightarrow S_2 = S_1 \left( r^n + 1 \right) . . . . \left( 2 \right)\]

\[\text { And, sum of 3n terms }, S_3 = a\left( \frac{r^{3n} - 1}{r - 1} \right)\]

\[ \Rightarrow S_3 = a\left[ \frac{\left( r^n \right)^3 - 1^3}{r - 1} \right]\]

\[ \Rightarrow S_3 = a\left[ \frac{\left( r^n - 1 \right)\left( r^{2n} + r^n + 1 \right)}{r - 1} \right]\]

\[ \Rightarrow S_3 = S_1 \left( r^{2n} + r^n + 1 \right) . . . \left( 3 \right)\]

\[\text { Now, LHS }= \left( S_1 \right)^2 + \left( S_2 \right)^2 \]

\[ = \left( S_1 \right)^2 + \left[ S_1 \left( r^n + 1 \right) \right]^2 \left[ \text { Using } \left( 2 \right) \right]\]

\[ = \left( S_1 \right)^2 \left[ 1 + \left( r^n + 1 \right)^2 \right]\]

\[ = \left( S_1 \right)^2 \left[ 1 + r^{2n} + 2 r^n + 1 \right]\]

\[ = \left( S_1 \right)^2 \left[ r^{2n} + r^n + 1 + r^n + 1 \right]\]

\[ = \left( S_1 \right)\left[ S_1 \left( r^{2n} + r^n + 1 \right) + S_1 \left( r^n + 1 \right) \right]\]

\[ = \left( S_1 \right)\left[ S_2 + S_3 \right] \left[ Using \left( 2 \right) and \left( 3 \right) \right]\]

 = RHS

Hence proved .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.3 | Q 14 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Express the recurring decimal 0.125125125 ... as a rational number.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


Find the geometric means of the following pairs of number:

−8 and −2


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


The fractional value of 2.357 is 


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


The third term of G.P. is 4. The product of its first 5 terms is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×