Advertisements
Advertisements
प्रश्न
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
उत्तर
Let a be the first term and r be the common ratio of the given G.P.
\[\text {Sum of n terms, } S_1 = a\left( \frac{r^n - 1}{r - 1} \right) . . . \left( 1 \right)\]
\[\text { Sum of 2n terms }, S_2 = a\left( \frac{r^{2n} - 1}{r - 1} \right)\]
\[ \Rightarrow S_2 = a\left[ \frac{\left( r^n \right)^2 - 1^2}{r - 1} \right]\]
\[ \Rightarrow S_2 = a\left[ \frac{\left( r^n - 1 \right)\left( r^n + 1 \right)}{r - 1} \right]\]
\[ \Rightarrow S_2 = S_1 \left( r^n + 1 \right) . . . . \left( 2 \right)\]
\[\text { And, sum of 3n terms }, S_3 = a\left( \frac{r^{3n} - 1}{r - 1} \right)\]
\[ \Rightarrow S_3 = a\left[ \frac{\left( r^n \right)^3 - 1^3}{r - 1} \right]\]
\[ \Rightarrow S_3 = a\left[ \frac{\left( r^n - 1 \right)\left( r^{2n} + r^n + 1 \right)}{r - 1} \right]\]
\[ \Rightarrow S_3 = S_1 \left( r^{2n} + r^n + 1 \right) . . . \left( 3 \right)\]
\[\text { Now, LHS }= \left( S_1 \right)^2 + \left( S_2 \right)^2 \]
\[ = \left( S_1 \right)^2 + \left[ S_1 \left( r^n + 1 \right) \right]^2 \left[ \text { Using } \left( 2 \right) \right]\]
\[ = \left( S_1 \right)^2 \left[ 1 + \left( r^n + 1 \right)^2 \right]\]
\[ = \left( S_1 \right)^2 \left[ 1 + r^{2n} + 2 r^n + 1 \right]\]
\[ = \left( S_1 \right)^2 \left[ r^{2n} + r^n + 1 + r^n + 1 \right]\]
\[ = \left( S_1 \right)\left[ S_1 \left( r^{2n} + r^n + 1 \right) + S_1 \left( r^n + 1 \right) \right]\]
\[ = \left( S_1 \right)\left[ S_2 + S_3 \right] \left[ Using \left( 2 \right) and \left( 3 \right) \right]\]
= RHS
Hence proved .
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
For the G.P. if r = `1/3`, a = 9 find t7
For the G.P. if a = `2/3`, t6 = 162, find r.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. if a = 2, r = 3, Sn = 242 find n
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.