Advertisements
Advertisements
प्रश्न
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
उत्तर
The geometric series `sqrt7, sqrt21, 3sqrt7,...`
First term, a = `sqrt7`
Common ratio, r = `sqrt21/sqrt7 = sqrt3`
Sum of n terms = `("a"(1 - "r"^"n"))/(1 - "r")` when r > 1
= `(sqrt7 [(sqrt3)^"n" - 1])/("r" -1)`
= `(sqrt7 [(sqrt3)^("n"/2) - 1])/(sqrt3 -1) xx (sqrt3 + 1)/(sqrt3 + 1)`
= `(sqrt7 (sqrt3 + 1)(3^("n"/2) - 1))/2`
= `(sqrt7(1 + sqrt3))/2[(3)^"n"/2 - 1]`
= `(sqrt7(1 + sqrt3))/2[(3)^(n/2) - 1]`
APPEARS IN
संबंधित प्रश्न
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Evaluate `sum_(k=1)^11 (2+3^k )`
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If a, b, c are in G.P., then prove that:
Find the geometric means of the following pairs of number:
−8 and −2
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
For the G.P. if r = − 3 and t6 = 1701, find a.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`