हिंदी

For a G.P. a = 2, r = -23, find S6 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a G.P. a = 2, r = `-2/3`, find S6

योग

उत्तर

a = 2, r = `-2/3`

Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1

S6 = `(2[1 - (-2/3)^6])/(1 - (-2/3)`

= `(2[1 - (2/3)^6])/(5/3)`

= `6/5[(729 - 64)/3^6]`

= `6/5[665/729]`

S6 = `266/243`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.2 | Q 2. (i) | पृष्ठ ३१

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×