हिंदी

Which Term of the Progression 0.004, 0.02, 0.1, ... is 12.5? - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?

उत्तर

We have, 

\[\frac{a_2}{a_1} = \frac{0 . 02}{0 . 004} = 5, \frac{a_3}{a_2} = \frac{0 . 1}{0 . 02} = 5\]

\[ \Rightarrow \frac{a_2}{a_1} = \frac{a_3}{a_2} = 5\]

\[\text { The given progression is a G . P . whose first term, a is 0 . 004 and common ratio, r is 5 }. \]

\[\text { Let the nth term be } 12 . 5 . \]

\[ \therefore a_n = 12 . 5\]

\[ \Rightarrow a r^{n - 1} = 12 . 5\]

\[ \Rightarrow (0 . 004)(5 )^{n - 1} = 12 . 5\]

\[ \Rightarrow (5 )^{n - 1} = \frac{12 . 5}{0 . 004}\]

\[ \Rightarrow (5 )^{n - 1} = 3125\]

\[ \Rightarrow (5 )^{n - 1} = (5 )^5 \]

\[\text { Comparing the power of both the sides }\]

\[ \Rightarrow n - 1 = 5\]

\[ \Rightarrow n = 6\]

\[\text { Thus, 6th term of the given G . P . is } 12 . 5\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.1 | Q 5 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Find the geometric means of the following pairs of number:

a3b and ab3


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


The two geometric means between the numbers 1 and 64 are 


For the G.P. if a = `2/3`, t6 = 162, find r.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For a G.P. if S5 = 1023 , r = 4, Find a


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×