Advertisements
Advertisements
प्रश्न
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
उत्तर
\[\text { a, b and c are in A . P } . \]
\[ \therefore 2b = a + c . . . . . . . (i)\]
\[\text { Also, a, b and d are in G . P } . \]
\[ \therefore b^2 = ad . . . . . . . (ii)\]
\[\text { Now }, \left( a - b \right)^2 = a^2 - 2ab + b^2 \]
\[ \Rightarrow \left( a - b \right)^2 = a^2 - a\left( a + c \right) + ad \left[ \text { Using } (i)\text { and } (ii) \right]\]
\[ \Rightarrow \left( a - b \right)^2 = a^2 - a^2 - ac + ad\]
\[ \Rightarrow \left( a - b \right)^2 = ad - ac\]
\[ \Rightarrow \left( a - b \right)^2 = a(d - c)\]
\[\text { Therefore, }a, \left( a - b \right) \text { and } (d - c) \text { are in G . P }. \]
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
Find the geometric means of the following pairs of number:
−8 and −2
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Which term of the G.P. 5, 25, 125, 625, … is 510?
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.