हिंदी

Show that in an Infinite G.P. with Common Ratio R (|R| < 1), Each Term Bears a Constant Ratio to the Sum of All Terms that Follow It. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.

उत्तर

\[\text { Let us take a G . P . with terms }a_1 , a_2 , a_3 , a_4 , . . . \infty\text {  and common ratio r }\left( \left| r \right| < 1 \right) . \]

\[\text { Also, let us take the sum of all the terms following each term to be } S_1 , S_2 , S_3 , S_4 , . . . \]

\[\text { Now }, S_1 = \frac{a_2}{\left( 1 - r \right)} = \frac{ar}{\left( 1 - r \right)}, \]

\[ S_2 = \frac{a_3}{\left( 1 - r \right)} = \frac{a r^2}{\left( 1 - r \right)}, \]

\[ S_3 = \frac{a_4}{\left( 1 - r \right)} = \frac{a r^3}{\left( 1 - r \right)}, \]

\[ \Rightarrow \frac{a_1}{S_1} = \frac{a}{\frac{ar}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]

\[\frac{a_2}{S_2} = \frac{ar}{\frac{a r^2}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]

\[\frac{a_3}{S_3} = \frac{a r^2}{\frac{a r^3}{\left( 1 - r \right)}} = \frac{\left( 1 - r \right)}{r}, \]

\[\text { It is clearly seen that the ratio of each term to the sum of all the terms following it is constant . } \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.4 | Q 12 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


For the G.P. if r = − 3 and t6 = 1701, find a.


Which term of the G.P. 5, 25, 125, 625, … is 510?


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×