हिंदी

For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r

योग

उत्तर

Let a be the first term and r be the common ratio of G.P.

Then S3 = 125 and S6 =125 + 27 = 152

∴ `"S"_6/"S"_3= 152/125`

∴ `([("a"("r"^6 - 1))/("r" - 1)])/([("a"("r"^3 - 1))/("r" - 1)]) = 152/125`

∴ `("r"^6 - 1)/("r"^3 - 1) = 152/125`

∴ `(("r"^3 - 1)("r"^3 + 1))/("r"^3 - 1) = 152/125`

∴ r3 + 1 = `152/125`

∴ r3 = `152/125 - 1 = 27/125 = (3/5)^3`

∴ r = `3/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.2 | Q 3. (ii) | पृष्ठ ३१

संबंधित प्रश्न

Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


The two geometric means between the numbers 1 and 64 are 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn

3, 6, 12, 24, ...


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


The third term of G.P. is 4. The product of its first 5 terms is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×