Advertisements
Advertisements
प्रश्न
The two geometric means between the numbers 1 and 64 are
विकल्प
(a) 1 and 64
(b) 4 and 16
(c) 2 and 16
(d) 8 and 16
(e) 3 and 16
उत्तर
(b) 4 and 16
\[\text{ Let the two G . M . s between 1 and 64 be G_1 and G_2 } . \]
\[\text{ Thus, 1, G_1 , G_2 and 64 are in G . P } . \]
\[ 64 = 1 \times r^3 \]
\[ \Rightarrow r = \sqrt[3]{64}\]
\[ \Rightarrow r = 4\]
\[ \Rightarrow G_1 = ar = 1 \times 4 = 4\]
\[\text{ And }, G_2 = a r^2 = 1 \times 4^2 = 16\]
\[\text{ Thus, 4 and 16 are the required G . M . s } .\]
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
Write the product of n geometric means between two numbers a and b.
The fractional value of 2.357 is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
The sum or difference of two G.P.s, is again a G.P.