Advertisements
Advertisements
प्रश्न
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
उत्तर
Let the first term of the geometric progression be a and common ratio = `1/"r"^"n"`, then
Sum of n terms = `("a"(1 - "r"^"n"))/(1 - "r")` .....(i)
(n + 1)th term = `"ar"^("n"+ 1 - 1)` = arn
∴ arn + arn + 1 + arn + 2 + ....... up to n terms
= `("ar"^"n"(1 - "r"^"n"))/(1 - "r")` .....(ii)
Dividing equation (i) by (ii), we get
`("Sum of n terms")/("Sum of next n terms") = ("a"(1 - "r"^"n"))/(1 - "r") ÷ ("ar"^ "n"(1 - "r"^"n"))/(1 - "r")`
= `("a"(1 - "r"^"n"))/(1 - "r") xx (1 - "r")/("ar"^"n" (1 - "r"^ "n"))`
= `1/"r"^"n"`
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the rational number whose decimal expansion is \[0 . 423\].
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.