हिंदी

Find K Such that K + 9, K − 6 and 4 Form Three Consecutive Terms of a G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.

उत्तर

k, k + 9, k−6 are in G.P.

\[\therefore \left( k - 6 \right)^2 = 4\left( k + 9 \right)\]

\[ \Rightarrow k^2 + 36 - 12k = 4k + 36\]

\[ \Rightarrow k^2 - 16k = 0\]

\[ \Rightarrow k \left( k - 16 \right) = 0\]

\[ \Rightarrow k = 0, 16\]

But, k = 0 is not possible.
∴ k = 16

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 3 | पृष्ठ ४५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given a G.P. with a = 729 and 7th term 64, determine S7.


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. If t3 = 20 , t6 = 160 , find S7


For a G.P. If t4 = 16, t9 = 512, find S10


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Express the following recurring decimal as a rational number:

`2.bar(4)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×