हिंदी

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn - Mathematics

Advertisements
Advertisements

प्रश्न

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn

योग

उत्तर

Let the geometric progression be a + ar + ar2 +….. + arn – 1

The product of these n terms,  P = a. ar . ar2….. arn – 1

= `"a"^"n". "r"^(1 + 2 + ...... + ("n" - 1))`

= `"a"^"n""r" ("n" ("n" - 1))/2`

∴ `"P"^2 = "a"^(2"n"). "r"("n"("n" - 1))`

R = `1/"a" + 1/"ar" + 1/"ar"^2 + ....... + 1/"ar"^("n" - 1)`

= `(1/"a" [(1/"r")^"n" - 1])/1/"r" -1`

= `((1 - "r"^"n")"r")/("ar"^"n"(1 - "r"))`

∴ Rn = `((1 - "r"^"n")^"n")/(("a"^"n" "r"^"n"("n" - 1))(1 - "r")^"n")`

 Left Side: P2 Rn = `"a"^(2"n") "r"^("n" ("n" -1)) ((1 - "r"^"n")^"n")/(("a"^"n""r"^("n"("n" - 1))(1 - "r")^"n"))`

= `("a"^"n"(1 - "r"^"n")^"n")/((1 - "r")"n") = "S"^"n"`

Whereas S = a + ar + ar2 + .... + arn - 1 

= `("a"(1 - "r"^"n"))/(1 - "r")`

Hence, P2Rn = Sn

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Miscellaneous Exercise | Q 14 | पृष्ठ १९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the rational number whose decimal expansion is \[0 . 423\].


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


For the G.P. if r = `1/3`, a = 9 find t7


Which term of the G.P. 5, 25, 125, 625, … is 510?


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. If t4 = 16, t9 = 512, find S10


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Find : `sum_("n" = 1)^oo 0.4^"n"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×