हिंदी

The Pth, Qth And Rth Terms of an A.P. Are A, B, C Respectively. Show That (Q – R )A + (R – P )B + (P – Q )C = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0

उत्तर

Let t and d be the first term and the common difference of the A.P. respectively.

The nth term of an A.P. is given by, an + (n – 1d

Therefore,

ap = t + (p – 1d = a … (1)

aq = t + (q – 1)d = b … (2)

ar = t + (r – 1d = c … (3)

Subtracting equation (2) from (1), we obtain

(p – 1 – q + 1) d = a – b

⇒ (p – qd = a – b

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Miscellaneous Exercise | Q 15 | पृष्ठ १९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Which term of the A.P. 3, 8, 13, ... is 248?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


Write the sum of first n even natural numbers.


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×