हिंदी

Find the Sum of the Following Arithmetic Progression : a + B, a − B, a − 3b, ... to 22 Terms - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms

उत्तर

a + b, a − b, a − 3b ... to 22 terms

\[\text { We have }: \]

\[\text { First term } = a + b, d = \left( a - b - a - b \right) = - 2b\]

\[n = 22\]

\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ = \frac{22}{2}\left[ 2 \times (a + b) + (22 - 1)( - 2b) \right]\]

\[ = 11\left[ 2a - 40b \right] = 22a - 440b\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.4 | Q 1.5 | पृष्ठ ३०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


Is 68 a term of the A.P. 7, 10, 13, ...?


Is 302 a term of the A.P. 3, 8, 13, ...?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If m th term of an A.P. is n and nth term is m, then write its pth term.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×