हिंदी

The First Term of an A.P. is 5, the Common Difference is 3 and the Last Term is 80; Find the Number of Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.

उत्तर

Here, a = 5, d = 3, an = 80
Let the number of terms be n.
Then, we have:

\[a_n = a + \left( n - 1 \right)d\]

\[ \Rightarrow 80 = 5 + \left( n - 1 \right)3\]

\[ \Rightarrow 75 = \left( n - 1 \right)3\]

\[ \Rightarrow 25 = \left( n - 1 \right)\]

\[ \Rightarrow 26 = n\]

Thus, there are 26 terms in the given A.P.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 7 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the A.P. 84, 80, 76, ... is 0?


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


Write the sum of first n even natural numbers.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×