हिंदी

If, S1 is the Sum of an Arithmetic Progression of 'N' Odd Number of Terms and S2 the Sum of the Terms of the Series in Odd Places, Then S 1 S 2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 

विकल्प

  • \[\frac{2n}{n + 1}\]

  • \[\frac{n}{n + 1}\]

  • \[\frac{n + 1}{2n}\]

  • \[\frac{n + 1}{n}\]

MCQ

उत्तर

\[\frac{2n}{n + 1}\]

Let n be an odd number.
Given:

\[S_1 = \text { Sum of odd number of terms }\]

\[ = \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\} . . . . . \left( 1 \right)\]

\[\text { Since n is odd, the number of odd places } = \frac{n + 1}{2}\]

\[ S_2 = \text { Sum of the terms of a series in odd places }\]

\[ = \frac{\left( \frac{n + 1}{2} \right)}{2}\left\{ 2a + \left( \frac{n + 1}{2} - 1 \right)2d \right\}\]

\[ = \frac{n + 1}{4}\left\{ 2a + \left( n - 1 \right)d \right\} . . . . . \left( 2 \right)\]

From equations \[\left( 1 \right) \text { and } \left( 2 \right)\] ,we have:

\[\frac{S_1}{S_2} = \frac{\frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}}{\frac{n + 1}{4}\left\{ 2a + \left( n - 1 \right)d \right\}}\]

\[ = \frac{2n}{n + 1}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.9 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.9 | Q 19 | पृष्ठ ५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


Find the sum of all numbers between 200 and 400 which are divisible by 7.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find:

nth term of the A.P. 13, 8, 3, −2, ...


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×