Advertisements
Advertisements
प्रश्न
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
उत्तर
Given:
Let the first term of the A.P. be a and the common difference be d.
\[a_4 = 3a\]
\[ \Rightarrow a + \left( 4 - 1 \right)d = 3a\]
\[ \Rightarrow a + 3d = 3a\]
\[ \Rightarrow 3d = 2a\]
\[ \Rightarrow a = \frac{3d}{2} . . . (i)\]
\[\text { And,} a_7 - 2 a_3 = 1\]
\[ \Rightarrow a + \left( 7 - 1 \right)d - 2\left[ a + \left( 3 - 1 \right)d \right] = 1\]
\[ \Rightarrow a + 6d - 2(a + 2d) = 1\]
\[ \Rightarrow a + 6d - 2a - 4d = 1\]
\[ \Rightarrow - a + 2d = 1\]
\[ \Rightarrow - \frac{3d}{2} + 2d = 1 \left[ \text { From } (i) \right] \]
\[ \Rightarrow \frac{- 3d + 4d}{2} = 1\]
\[ \Rightarrow \frac{d}{2} = 1\]
\[ \Rightarrow d = 2\]
\[\text { Putting the value in (i), we get }: \]
\[a = \frac{3 \times 2}{2}\]
\[ \Rightarrow a = 3\]
APPEARS IN
संबंधित प्रश्न
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of first n natural numbers.
Find the sum of all odd numbers between 100 and 200.
Find the sum of all integers between 100 and 550, which are divisible by 9.
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If Sn denotes the sum of first n terms of an A.P. < an > such that
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.