हिंदी

Which Term of the Sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is (A) Purely Real (B) Purely Imaginary? - Mathematics

Advertisements
Advertisements

प्रश्न

Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?

उत्तर

12 + 8i, 11 + 6i, 10 + 4i...
This is an A.P.
Here, we have:
a = 12 + 8i

\[d = \left( 11 + 6i - 12 - 8i \right)\]

\[ = \left( - 1 - 2i \right)\]

\[\text { Let the real term be } a_n = a + \left( n - 1 \right)d . \]

\[ a_n = \left( 12 + 8i \right) + \left( n - 1 \right)\left( - 1 - 2i \right)\]

\[ = \left( 12 + 8i \right) + \left( - n + 1 - 2in + 2i \right)\]

\[ = 12 + 8i - n + 1 - 2in + 2i\]

\[ = \left( 13 - n \right) + \left( 8 - 2n + 2 \right)i\]

\[ = \left( 13 - n \right) + \left( 10 - 2n \right)i\]

\[ a_n \text { has to be real } . \]

\[ \therefore \left( 10 - 2n \right) = 0\]

\[ \Rightarrow n = 5\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 5.2 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 3, 8, 13, ... is 248?


Which term of the A.P. 84, 80, 76, ... is 0?


Is 302 a term of the A.P. 3, 8, 13, ...?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of first n natural numbers.


Find the sum of all even integers between 101 and 999.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×