हिंदी

Shamshad Ali Buys a Scooter for Rs 22000. He Pays Rs 4000 Cash and Agrees to Pay the Balance in Annual Instalments of Rs 1000 Plus 10% Interest on the Unpaid Amount. How Much - Mathematics

Advertisements
Advertisements

प्रश्न

Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.

उत्तर

Cost of the scooter = Rs 22000
Shamshad Ali pays Rs 4000 in cash.
∴ Unpaid amount = Rs 22000

\[-\] Rs 4000 = Rs 18000

Number of years taken by Shamshed Ali to pay the whole amount = 18000

\[\div\] 1000 = 18
He agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount.
Total amount of instalments:

10 % of Rs 18000 + 10 % of Rs 17000 + 10 % of Rs 16000

\[ = 1800 + 1700 + 1600 . . . . \]

It is in an A.P. where a = 1800, d = \[-\] 100 and n = 18.
Therefore, total amount of instalments:

\[\frac{18}{2}\left[ 2 \times 1800 + (18 - 1) \times - 100 \right]\]

\[ = 9\left[ 3600 - 1700 \right]\]

\[ = \text { Rs } 17100\]

∴ Total amount Shamshad Ali has to pay = Rs (22000 + 17100) = Rs 39100

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.7 [पृष्ठ ४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.7 | Q 9 | पृष्ठ ४९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 84, 80, 76, ... is 0?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×