हिंदी

Insert Five Numbers Between 8 and 26 Such that the Resulting Sequence is an A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

उत्तर

Let

\[A_1 , A_2 , A_3 , A_4 , A_5\] be five numbers between 8 and 26.
Let d be the common difference.
Then, we have:
     26 = a7

\[\Rightarrow\] 26 = 8 + \[\left( 7 - 1 \right)\] d

\[\Rightarrow\] d = 3

\[\Rightarrow\] 26 = 8 + 6d

\[\Rightarrow\] d = 3

\[A_1 = 8 + d = 8 + 3 = 11\]

\[ A_2 = 8 + 2d = 8 + 6 = 14\]

\[ A_3 = 8 + 3d = 8 + 9 = 17\]

\[ A_4 = 8 + 4d = 8 + 12 = 20\]

\[ A_5 = 8 + 5d = 8 + 15 = 23\]

Therefore, the five numbers are 11, 14, 17, 20, 23.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.6 | Q 9 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Find:

nth term of the A.P. 13, 8, 3, −2, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 84, 80, 76, ... is 0?


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of first n odd natural numbers.


Find the sum of all integers between 50 and 500 which are divisible by 7.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×