English

Insert Five Numbers Between 8 and 26 Such that the Resulting Sequence is an A.P. - Mathematics

Advertisements
Advertisements

Question

Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

Solution

Let

\[A_1 , A_2 , A_3 , A_4 , A_5\] be five numbers between 8 and 26.
Let d be the common difference.
Then, we have:
     26 = a7

\[\Rightarrow\] 26 = 8 + \[\left( 7 - 1 \right)\] d

\[\Rightarrow\] d = 3

\[\Rightarrow\] 26 = 8 + 6d

\[\Rightarrow\] d = 3

\[A_1 = 8 + d = 8 + 3 = 11\]

\[ A_2 = 8 + 2d = 8 + 6 = 14\]

\[ A_3 = 8 + 3d = 8 + 9 = 17\]

\[ A_4 = 8 + 4d = 8 + 12 = 20\]

\[ A_5 = 8 + 5d = 8 + 15 = 23\]

Therefore, the five numbers are 11, 14, 17, 20, 23.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.6 | Q 9 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Is 302 a term of the A.P. 3, 8, 13, ...?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of first n odd natural numbers.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

Write the sum of first n even natural numbers.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×