Advertisements
Advertisements
Question
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
Solution
Given:
\[S_n = 3 n^2 \]
\[\text { For } n = 1, S_1 = 3 \times 1^2 = 3\]
\[\text { For } n = 2, S_2 = 3 \times 2^2 = 12\]
\[\text { For } n = 3, S_3 = 3 \times 3^2 = 27 \]
\[\text { and so on }\]
\[ \therefore S_1 = a_1 = 3\]
\[ a_2 = S_2 - S_1 = 12 - 3 = 9\]
\[ a_3 = S_3 - S_2 = 27 - 12 = 15\]
\[\text { and so on }\]
\[\text { Thus, the A . P . is } 3, 9, 15 . . . \]
APPEARS IN
RELATED QUESTIONS
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Is 302 a term of the A.P. 3, 8, 13, ...?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of first n natural numbers.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.