Advertisements
Advertisements
प्रश्न
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
उत्तर
Given:
\[S_n = 3 n^2 \]
\[\text { For } n = 1, S_1 = 3 \times 1^2 = 3\]
\[\text { For } n = 2, S_2 = 3 \times 2^2 = 12\]
\[\text { For } n = 3, S_3 = 3 \times 3^2 = 27 \]
\[\text { and so on }\]
\[ \therefore S_1 = a_1 = 3\]
\[ a_2 = S_2 - S_1 = 12 - 3 = 9\]
\[ a_3 = S_3 - S_2 = 27 - 12 = 15\]
\[\text { and so on }\]
\[\text { Thus, the A . P . is } 3, 9, 15 . . . \]
APPEARS IN
संबंधित प्रश्न
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the A.P. 84, 80, 76, ... is 0?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of first n odd natural numbers.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
Write the sum of first n odd natural numbers.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?