Advertisements
Advertisements
प्रश्न
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
उत्तर
Let d be the common difference and n be the number of terms of the A.P.
Since the first term is a and the second term is b
Therefore, d = b – a
Also, the last term is c
So c = a + (n – 1)(b – a) .....(Since d = b – a)
⇒ n – 1 = `(c - a)/(b - a)`
⇒ n = `1 + (c - a)/(b - a)`
= `(b - a + c - a)/(b - a)`
= `(b + c - 2a)/(b - a)`
Therefore, Sn = `n/2 (a + 1)`
= `((b + c - 2a))/(2(b - a)) (a + c)`
APPEARS IN
संबंधित प्रश्न
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
Which term of the A.P. 84, 80, 76, ... is 0?
Is 68 a term of the A.P. 7, 10, 13, ...?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
Write the sum of first n even natural numbers.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______