हिंदी

If the Nth Term an of a Sequence is Given by an = N2 − N + 1, Write Down Its First Five Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.

उत्तर

\[\text { Given } : a_n = n^2 - n + 1\]

\[\text { For } n = 1, a_1 = 1^2 - 1 + 1 \]

\[ = 1\]

\[\text { For } n = 2, a_2 = 2^2 - 2 + 1 \]

\[ = 3\]

\[\text { For n = 3, a_3 = 3^2 - 3 + 1 \]

\[ = 7\]

\[\text { For } n = 4, a_4 = 4^2 - 4 + 1 \]

\[ = 13\]

\[\text { For  }n = 5, a_5 = 5^2 - 5 + 1 \]

\[ = 21\]

Thus, the first five terms of the sequence are 1, 3, 7, 13, 21.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.1 | Q 1 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Is 302 a term of the A.P. 3, 8, 13, ...?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of first n natural numbers.


Find the sum of first n odd natural numbers.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 100 and 550, which are divisible by 9.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


Find the sum of odd integers from 1 to 2001.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×