हिंदी

The 10th and 18th Terms of an A.P. Are 41 and 73 Respectively. Find 26th Term. - Mathematics

Advertisements
Advertisements

प्रश्न

The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.

उत्तर

Given:

\[a_{10 =} 41\]

\[ \Rightarrow a + \left( 10 - 1 \right)d = 41 \left[ a_n = a + \left( n - 1 \right)d \right]\]

\[ \Rightarrow a + 9d = 41 \]

\[\text { And }, a_{18} = 73\]

\[ \Rightarrow a + \left( 18 - 1 \right)d = 73 \left[ a_n = a + \left( n - 1 \right)d \right]\]

\[ \Rightarrow a + 17d = 73 \]

\[\text { Solving the two equations, we get }: \]

\[ \Rightarrow 17d - 9d = 73 - 41\]

\[ \Rightarrow 8d = 32\]

\[ \Rightarrow d = 4 . . . (i)\]

\[\text { Putting the value in first equation, we get }: \]

\[a + 9 \times 4 = 41\]

\[ \Rightarrow a + 36 = 41\]

\[ \Rightarrow a = 5 . . . (ii)\]

\[a_{26} = a + \left( 26 - 1 \right)d \left[ a_n = a + \left( n - 1 \right)d \right]\]

\[ \Rightarrow a_{26} = a + 25d \]

\[ \Rightarrow a_{26} = 5 + 25 \times 4 \left( \text { From } (i) \text { and } (ii) \right)\]

\[ \Rightarrow a_{26} = 5 + 100 = 105\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 11 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to n terms of the A.P., whose kth term is 5k + 1.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of all odd numbers between 100 and 200.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


Write the sum of first n odd natural numbers.


If m th term of an A.P. is n and nth term is m, then write its pth term.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×