Advertisements
Advertisements
प्रश्न
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
उत्तर
Let Rs. x be saved in first year
Annual increment = Rs. 200
Which forms an A.P.
First term = a and common difference d = 200
n = 20 years
∴ Sn = `n/2[2a + (n - 1)d]`
⇒ S20 = `20/2 [2a + (20 - 1) 200]`
⇒ 66000 = 10[2a + 3800]
⇒ 6600 = 2a + 3800
⇒ 2a = 6600 – 3800
⇒ 2a = 2800
⇒ a = 1400
Hence, the man saved Rs. 1400 in the first year.
APPEARS IN
संबंधित प्रश्न
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
Write the sum of first n even natural numbers.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______