Advertisements
Advertisements
Question
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
Solution
Let Rs. x be saved in first year
Annual increment = Rs. 200
Which forms an A.P.
First term = a and common difference d = 200
n = 20 years
∴ Sn = `n/2[2a + (n - 1)d]`
⇒ S20 = `20/2 [2a + (20 - 1) 200]`
⇒ 66000 = 10[2a + 3800]
⇒ 6600 = 2a + 3800
⇒ 2a = 6600 – 3800
⇒ 2a = 2800
⇒ a = 1400
Hence, the man saved Rs. 1400 in the first year.
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
How many numbers of two digit are divisible by 3?
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of all integers between 100 and 550, which are divisible by 9.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
Write the common difference of an A.P. the sum of whose first n terms is
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
If m th term of an A.P. is n and nth term is m, then write its pth term.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.