Advertisements
Advertisements
Question
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
Solution
\[\text { Given: } \]
\[\text{ An } \hspace{0.167em} A . P .\text { with a = - 6 and d }= - \frac{11}{2} - \left( - 6 \right) = \frac{1}{2}\]
\[ S_n = - 25\]
\[ \therefore - 25 = \frac{n}{2}\left[ 2 \times \left( - 6 \right) + \left( n - 1 \right)\frac{1}{2} \right]\]
\[ \Rightarrow - 25 = \frac{n}{2}\left[ - 12 + \frac{n}{2} - \frac{1}{2} \right]\]
\[ \Rightarrow - 50 = n\left[ \frac{n}{2} - \frac{25}{2} \right]\]
\[ \Rightarrow - 100 = n\left( n - 25 \right)\]
\[ \Rightarrow n^2 - 25n + 100 = 0\]
\[ \Rightarrow \left( n - 20 \right)\left( n - 5 \right) = 0\]
\[ \Rightarrow n = 20 \text { or } n = 5\]
APPEARS IN
RELATED QUESTIONS
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Which term of the A.P. 4, 9, 14, ... is 254?
Is 68 a term of the A.P. 7, 10, 13, ...?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.