Advertisements
Advertisements
Question
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Solution
The two-digit numbers, which when divided by 4, yield 1 as remainder, are
13, 17, … 97.
This series forms an A.P. with first term 13 and common difference 4.
Let n be the number of terms of the A.P.
It is known that the nth term of an A.P. is given by, an = a + (n –1) d
∴97 = 13 + (n –1) (4)
⇒ 4 (n –1) = 84
⇒ n – 1 = 21
⇒ n = 22
Sum of n terms of an A.P. is given by,
APPEARS IN
RELATED QUESTIONS
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
Write the common difference of an A.P. whose nth term is xn + y.
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.