English

A Manufacturer of Radio Sets Produced 600 Units in the Third Year and 700 Units in the Seventh Year. Assuming that the Product Increases Uniformly by a Fixed Number Every Year, Find (I) the - Mathematics

Advertisements
Advertisements

Question

A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.

Solution

Let 

\[a_n\] denote the production of radio sets in the nth year.
Here,

\[a_3\] = 600,

\[a_7\] = 700
We know:

\[a_n = a + \left( n - 1 \right)d\]

\[a_3 = a + 2d\]

\[ \Rightarrow 600 = a + 2d . . . . . \left( 1 \right)\]

\[\text { And, } a_7 = a + 6d\]

\[ \Rightarrow 700 = a + 6d . . . . . \left( 2 \right)\]

Solving \[\left( 1 \right)\] and  \[\left( 2 \right)\] ,we get:
d = 25, a = 550
Hence, the production in the first year is 550 units.

(ii)  Let

\[S_n\] denote the total production in n years.
Total production in 7 years = \[S_7\]

\[= \frac{7}{2}\left\{ 2 \times 550 + \left( 7 - 1 \right)25 \right\}\]

\[ = 4375 \text { units }\]

(iii)  Production in the 10th year = \[a_{10}\]

                                      \[a_{10} = a + \left( 10 - 1 \right)d\]

                                              \[ = 550 + 9\left( 25 \right)\]

                                              \[ = 775\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.7 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.7 | Q 4 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of odd integers from 1 to 2001.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Find the sum of all odd numbers between 100 and 200.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×