Advertisements
Advertisements
Question
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
Solution
Given that a1 = a and Sp = 0
Sum of next q terms of the given A.P. = Sp+q – Sp
∴ `"S"_(p + q) = (p + q)/2[2a + (p + q - 1)d]`
And Sp = `p/2 [2a + (p - 1)d]` = 0
⇒ 2a + (p – 1)d = 0
⇒ (p – 1)d = – 2a
⇒ d = `(-2a)/(p - 1)`
Sum of next q terms = Sp+q – Sp
= `(p + q)/2[2a + (p + q- 1)d]` = 0
= `(p + q)/2[2a + (p + q - 1) ((-2a)/(p - 1))]`
= `(p + q)/2[2a + ((p - 1)(-2a))/(p - 1) - (2aq)/(p - 1)]`
= `(p + q)/2[2a - 2a - (2aq)/(p - 1)]`
= `((p + q))/2((-2aq)/(p - 1))`
= `(-a(p + q)q)/(p - 1)`
Hence, the required sum = `(-a(p + q)q)/(p - 1)`
APPEARS IN
RELATED QUESTIONS
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of all odd numbers between 100 and 200.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
Write the sum of first n even natural numbers.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.