Advertisements
Advertisements
Question
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Solution
Since
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., we have:
\[\frac{c + a}{b} - \frac{b + c}{a} = \frac{a + b}{c} - \frac{c + a}{b}\]
\[ \Rightarrow \frac{ac + a^2 - b^2 - bc}{ab} = \frac{ab + b^2 - c^2 - ac}{bc}\]
\[ \Rightarrow \frac{\left( a + b \right)\left( a - b \right) + c\left( a - b \right)}{ab} = \frac{\left( b + c \right)\left( b - c \right) + a\left( b - c \right)}{bc}\]
\[ \Rightarrow \frac{\left( a - b \right)\left( a + b + c \right)}{ab} = \frac{\left( b - c \right)\left( a + b + c \right)}{bc}\]
\[ \Rightarrow \frac{\left( a - b \right)}{ab} = \frac{\left( b - c \right)}{bc}\]
\[ \Rightarrow \frac{1}{b} - \frac{1}{a} = \frac{1}{c} - \frac{1}{b}\]
Hence,
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
APPEARS IN
RELATED QUESTIONS
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Which term of the A.P. 4, 9, 14, ... is 254?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
Find the sum of first n natural numbers.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.