English

The sum of terms equidistant from the beginning and end in an A.P. is equal to ______. - Mathematics

Advertisements
Advertisements

Question

The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.

Fill in the Blanks

Solution

The sum of terms equidistant from the beginning and end in an A.P. is equal to the [first term + last term].

Explanation:

Let A.P be a, a + d, a + 2d, a + 3d, …, a + (n – 1)d

Taking first and last term

a1 + an = a + a + (n – 1)d

= 2a + (n – 1)d

Taking second and second last term

a2 + an–1 = (a + d) + [a + (n – 2)d]

= 2a + (n – 1)d = a1 + an

Taking third from the beginning and the third from the end

a3 + an–2 = (a + 2d) + [a + (n – 3)d]

= 2a + (n – 1)d

= a1 + an

From the above pattern, we observe that the sum of terms equidistant from the beginning and the end in an A.P is equal to the [first term + last term]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Exercise [Page 164]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 9 Sequences and Series
Exercise | Q 28 | Page 164

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Find:

nth term of the A.P. 13, 8, 3, −2, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 4, 9, 14, ... is 254?


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×