Advertisements
Advertisements
Question
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
Solution
Let a be the first term and d the common difference of the A.P
Also let S1 be the sum of odd terms of A.P. having (2n + 1) terms.
Then S1 = a1 + a3 + a5 + ... + a2n+1
S1 = `(n + 1)/2 (a_1 + a_(2n + 1))`
S1 = `(n + 1)/2 [a + a + (2n + 1 - 1)d]`
= (n + 1) (a + nd)
Similarly, if S2 denotes the sum of even terms, then
S2 = `n/2 [2a + 2nd]` = n(a + nd)
Hence, `"S"_1/"S"_2 = ((n + 1)(a + nd))/(n(a + nd))`
= `(n + 1)/n`
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
Is 302 a term of the A.P. 3, 8, 13, ...?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Find the sum of first n natural numbers.
Find the sum of first n odd natural numbers.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.