Advertisements
Advertisements
Question
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
Solution
It is given that the man counts Rs 180 per minute for half an hour.
∴ Sum of money the man counts in 30 minutes = Rs 180
\[\times\] 30 = Rs 5400
Total money counted by the man = Rs 10710
∴ Money left for counting after 30 minutes = Rs (10710 − 5400) = Rs 5310
It is given that after 30 minutes, he counts at the rate of Rs 3 less every minute than the preceding minute.
Therefore, it would be an A.P. where a = 177 and d = −3.
Let the time taken to count Rs 5310 be n minutes.
\[5310 = \frac{n}{2}\left[ 2 \times 177 + \left( n - 1 \right) \times - 3 \right]\]
\[ \Rightarrow 10620 = 354 n - 3 n^2 + 3n\]
\[ \Rightarrow 3 n^2 - 357n + 10620 = 0\]
\[ \Rightarrow n^2 - 119n + 3540 = 0\]
\[ \Rightarrow n^2 - 59n - 60n + 3540 = 0\]
\[ \Rightarrow n\left( n - 59 \right) - 60\left( n - 59 \right) = 0\]
\[ \Rightarrow \left( n - 59 \right)\left( n - 60 \right) = 0\]
\[ \therefore n = 59 \text { or } 60\]
Thus, the time taken to count Rs 5310 would be 59 minutes or 60 minutes.
Hence, the total time taken to count Rs 10710 would be (30 + 59) minutes or (30 + 60) minutes, i.e. 89 minutes or 90 minutes, respectively.
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the A.P. 4, 9, 14, ... is 254?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of all even integers between 101 and 999.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
Write the common difference of an A.P. whose nth term is xn + y.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?