English

The First and Last Term of an A.P. Are a and L Respectively. If S is the Sum of All the Terms of the A.P. and the Common Difference is Given by Then K = - Mathematics

Advertisements
Advertisements

Question

The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =

Options

  • S

  • 2S

  • 3S

  • none of these

MCQ

Solution

2S

Given:

\[S = \frac{n}{2}\left( l + a \right)\]

\[ \Rightarrow \left( l + a \right) = \frac{2S}{n}\]

\[\text{ Also,} d = \frac{l^2 - a^2}{k - \left( l + a \right)}\]

\[ \Rightarrow d = \frac{\left( l + a \right)\left( l - a \right)}{k - \left( l + a \right)}\]

\[ \Rightarrow d = \frac{\left[ \left( n - 1 \right)d \right] \times \frac{2S}{n}}{k - \frac{2S}{n}}\]

\[ \Rightarrow k - \frac{2S}{n} = \left( n - 1 \right)\frac{2S}{n}\]

\[ \Rightarrow k = \frac{2S}{n}\left( n - 1 + 1 \right)\]

\[ \Rightarrow k = 2S\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.9 [Page 52]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.9 | Q 16 | Page 52

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×