Advertisements
Advertisements
Question
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
Solution
The sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7 are:
103, 119...791
Here, we have:
a = 103
d = 16
\[a_n = 791\]
\[\text { We know }: \]
\[ a_n = a + (n - 1)d\]
\[ \Rightarrow 791 = 103 + (n - 1) \times 16\]
\[ \Rightarrow 688 = 16n - 16\]
\[ \Rightarrow 704 = 16n\]
\[ \Rightarrow 44 = n\]
\[\text { Also }, S_n = \frac{n}{2}[2a + (n - 1)d]\]
\[ \Rightarrow S_{44} = \frac{44}{2}[2 \times 103 + (44 - 1) \times 16]\]
\[ \Rightarrow S_{44} = 22 [206 + 688]\]
\[ \Rightarrow S_{44} = 22 \times 894 = 19668\]
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Which term of the A.P. 84, 80, 76, ... is 0?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
How many numbers of two digit are divisible by 3?
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of first n odd natural numbers.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
bc, ca, ab are in A.P.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
Write the common difference of an A.P. whose nth term is xn + y.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If Sn denotes the sum of first n terms of an A.P. < an > such that
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.