Advertisements
Advertisements
Question
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Solution
Given:
\[a_{m + 1} = 2 a_{n + 1} \]
\[ \Rightarrow a + (m + 1 - 1)d = 2[a + (n + 1 - 1)d]\]
\[ \Rightarrow a + md = 2(a + nd)\]
\[ \Rightarrow a + md = 2a + 2nd\]
\[ \Rightarrow 0 = a + 2nd - md \]
\[ \Rightarrow nd = \frac{md - a}{2} . . . (i)\]
To prove:
\[a_{3m + 1} = 2 a_{m + n + 1} \]
\[\text { LHS: } a_{3m + 1} = a + (3m + 1 - 1)d\]
\[ \Rightarrow a_{3m + 1} = a + 3md\]
\[RHS: 2 a_{m + n + 1} = 2[a + (m + n + 1 - 1)d]\]
\[ \Rightarrow 2 a_{m + n + 1} = 2(a + md + nd)\]
\[ \Rightarrow 2 a_{m + n + 1} = 2\left[ a + md + \left( \frac{md - a}{2} \right) \right] \left( \text { From }(i) \right)\]
\[ \Rightarrow 2 a_{m + n + 1} = 2\left[ \frac{2a + 2md + md - a}{2} \right]\]
\[\Rightarrow 2 a_{m + n + 1} = 2\left[ \frac{a + 3md}{2} \right]\]
\[ \Rightarrow 2 a_{m + n + 1} = a + 3md\]
∴ LHS = RHS
APPEARS IN
RELATED QUESTIONS
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Which term of the A.P. 3, 8, 13, ... is 248?
Is 68 a term of the A.P. 7, 10, 13, ...?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
How many numbers of two digit are divisible by 3?
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of all integers between 50 and 500 which are divisible by 7.
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
Write the sum of first n even natural numbers.
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.