English

In a Certain A.P. the 24th Term is Twice the 10th Term. Prove that the 72nd Term is Twice the 34th Term. - Mathematics

Advertisements
Advertisements

Question

In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.

Solution

Given:

\[a_{24} = 2 a_{10} \]

\[ \Rightarrow a + \left( 24 - 1 \right)d = 2\left[ a + \left( 10 - 1 \right)d \right]\]

\[ \Rightarrow a + 23d = 2(a + 9d)\]

\[ \Rightarrow a + 23d = 2a + 18d\]

\[ \Rightarrow 5d = a . . . (i)\]

\[\text { To prove }: \]

\[ a_{72} = 2 a_{34} \]

\[\text { LHS: } a_{72} = a + \left( 72 - 1 \right)d\]

\[ \Rightarrow a_{72} = a + 71d\]

\[ \Rightarrow a_{72} = 5d + 71d \left( \text { From }(i) \right)\]

\[ \Rightarrow a_{72} = 76d\]

\[\text { RHS }: 2 a_{34} = 2\left[ a + \left( 34 - 1 \right)d \right]\]

\[ \Rightarrow 2 a_{34} = 2\left( a + 33d \right)\]

\[ \Rightarrow 2 a_{34} = 2(5d + 33d) \left( \text { Form }(i) \right)\]

\[ \Rightarrow 2 a_{34} = 2\left( 38d \right)\]

\[ \Rightarrow 2 a_{34} = 76d\]

∴ RHS = LHS
Hence, proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.2 | Q 12 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


Is 302 a term of the A.P. 3, 8, 13, ...?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


How many numbers of two digit are divisible by 3?


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P. 


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×